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ABSTRACT 

In recent years, unmanned space vehicles have increasingly become targets of 

cyber-attacks. Exacerbating the problem is the desire to reduce cost and accelerate access 

to space by hosting government-supplied payloads on commercial space platforms. These 

commercially hosted payloads require stringent confidentiality protection and encryption 

alone is not sufficient to protect against illegal information leakage on a spacecraft with 

multilevel security (cross-domain) capabilities. Covert channels may still exist and be 

exploited by colluding entities to communicate secretly via shared resources. This report 

describes a preliminary study of potential covert channels in communications protocols 

used in satellites—specifically MIL-STD-1553B and SpaceWire. 
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I. INTRODUCTION 

In recent years, unmanned space vehicles have increasingly become targets of 

cyber-attacks. A 2011 report to Congress discussed several suspicious cyber events that 

interfered with two U.S. Government earth observation satellites in 2007 and 2008. The 

U.S. Geological Survey and National Aeronautics and Space Administration offices 

confirmed the attacks on the Landsat-7 and Terra EOS AM-1 satellites, respectively [1]. 

Exacerbating the problem is the desire to reduce cost and accelerate access to space by 

hosting government-supplied payloads on commercial space platforms.  

The U.S. National Space Policy of 2010 mandates government organizations to 

leverage commercial space services to reduce the costs of government space missions, 

including the use of hosted government payloads on commercial spacecraft [2]. In its 

2013 annual report, the Government Accountability Office (GAO) found that hosting 

government payloads on commercial satellite platforms has saved selected agencies 

hundreds of millions of dollars [3]. The GAO report highlighted a number of successful 

space projects that demonstrated the viability of the commercially hosted payload 

approach. For example, the Internet Protocol (IP) Routing in Space (IRIS) Joint 

Capability Technology Demonstration program was developed by an industry group in 

collaboration with the Department of Defense to provide IP routing onboard the 

commercial geostationary orbit satellite Intelsat 14 [4], and the Air Force’s Commercially 

Hosted Infrared Payload (CHIRP) Flight Demonstration Program was an experiment that 

used a commercial communications satellite to host a classified infrared sensor payload 

[5]. Following the success of CHIRP, the U.S. Air Force started the Hosted Payload 

Solutions (HoPS) program to acquire on-orbit and ground services for government-

furnished hosted payloads on commercial space platforms [6]. 

While hosting government payloads on non-government spacecraft promises both 

acquisition flexibility and cost savings, the security ramifications associated with the 

management of the satellite’s shared resources with the satellite vendor and other payload 

owners require additional review and qualification. One of the shared resources used by 

the onboard systems is the intra-spacecraft data handling network that is shared among 

the spacecraft platform and its payloads. 



 2 

To manage a shared network securely, both the temporal and spatial interactions 

among different modules residing on the network must be addressed. Without protection 

measures, one module could observe or corrupt another module’s data, or misbehave and 

flood the network. Determining the conditions under which the confidentiality, integrity 

and availability of the hosted payloads can be maintained while sharing a data network is 

of critical significance.   

 

A. MOTIVATION 
For classified hosted payload, strong separation is required for information flow 

control in the presence of possible adversarial actions (e.g., malicious software co-

resident on the commercial host). Threats to the commercial supply chain are just one 

motivation for considering appropriate isolation and protection of classified payloads on 

unclassified satellite hosts.  

The National Information Assurance Policy for Space Systems Used to Support 

National Security Missions (Committee on National Security Systems Policy No. 12) 

requires the use of cryptography to encrypt all data transmitted over communications 

links, provide transmission security (TRANSEC) protection, and authenticate and encrypt 

all system commands [7]. However, regarding information flow control in a mandatory 

access control policy (i.e., no read-up and no write-down with respect to different levels 

of confidentiality), it has been shown that encryption is not sufficient to control all 

possible flows with different security classifications [8]. Covert and side channels may 

still exist in the presence of shared resources, e.g., the data buses between the classified 

payload and the space platform. A covert channel allows two cooperating entities to 

communicate secretly by manipulating shared resources, in violation of the security 

policy [9],[10]. In contrast, a side channel leaks information to other parties, and does not 

require the cooperation of some malicious entity on the high side. 

Spacecraft communications architectures have evolved over the years. 

Conventional spacecraft typically use serial, circuit-based communications architectures, 

e.g., MIL-STD-1553B [11],[12], whereas advanced spacecraft gravitate towards network-

based architectures, e.g., SpaceWire [13]. An undesirable effect of this technological 

progress is the increased risk for cyber attacks since complex technologies that require 
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the dynamic allocation of resources across multiple components generally introduce 

emergent compositional vulnerabilities. 

In the open literature, no prior work has empirically investigated attacks on MIL-

STD-1553B (1553B herein) or SpaceWire, especially in terms of attacks disrupting 

information flow or non-interference properties—consequential for their use in hosted 

payload applications.  

This report describes the initial findings of our study on covert channel attacks 

against communications protocols used in satellites with payloads operating at different 

sensitivity levels. Our work focuses on protocols defined in the 1553B and SpaceWire 

standards. 

 

B. DEFINITIONS 
For the purposes of this study, we adopted the definition of a covert channel from 

A Guide to Understanding Covert Channel Analysis of Trusted Systems [14], which states 

that a covert channel is “a communication channel that allows a process to transfer 

information in a manner that violates the system’s security policy.” Other definitions 

exist. For example, Schaefer et al. stated that a covert communication channel exists if it 

is based on “transmission by storage into variables that describe resource states” [15]. 

This definition, however, is specific to the storage of variables and its context is only 

meaningful for a stateful operating system. Kemmerer defines covert channels as those 

that “use entities not normally viewed as data objects to transfer information from one 

subject to another” [16]. While this definition is more generic and can be applied to 

stateless networks, it does not address the notion that covert channels depend on a 

system’s security policy and how the system implements that policy. In this work, our use 

of the term ‘side channel’ is more closely aligned with Kemmerer’s (policy-agnostic, 

unexpected) communication channels, whereas we reserve the term ‘covert’ to describe 

channels used by entities to violate an information flow policy.  

We also adopted Kemmerer’s definitions of storage channels and timing channels. 

Specifically, a covert channel is a storage channel if “the sending process alters a 

particular data item, and the receiving process detects and interprets the value of the 

altered data to receive information covertly.” A covert channel is a timing channel if “the 
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sending process modulates the amount of time required for the receiving process to 

perform a task or detect a change in an attribute, and the receiving process interprets this 

delay or lack of delay as information” [16]. 

 

C. REPORT ORGANIZATION 
The remainder of this report begins with background information on intra-

spacecraft communications, the 1553B bus architecture and the SpaceWire protocol suite. 

This is followed by a description of the threat models that provide the basis for our study. 

Next, we discuss the results of our preliminary analysis of potential covert channels in 

1553B and SpaceWire protocols. Finally, we close with our conclusions and a brief 

description of future work. 
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II. BACKGROUND  

Before discussing covert information flows in the context of intra-spacecraft 

communications, we review the onboard communications architecture of a satellite, the 

1553B bus architecture, the SpaceWire network architecture, and two commercially 

hosted payload programs that were started by the United States Air Force. 

 

A. SPACECRAFT C0MMUNICATIONS 

A notional architecture of a satellite consists of an onboard computer, a number of 

subsystems, and one or more native and hosted payloads (see Figure 1 where the major 

subsystems are shaded.). The onboard computer controls the operation of the satellite, 

including commands execution, attitude and orbit control, time synchronization, failure 

detection and recovery, and housekeeping. The Communications subsystem manages the 

bidirectional communication channel between the satellite and ground station, and the 

Electrical Power subsystem controls the main power bus of the satellite. The Command 

and Data Handling (C&DH) subsystem handles commands and data sent and received by 

the spacecraft via the Communications subsystem.  

 

 
Figure 1. Notional spacecraft communications architecture. 
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On the uplink, the C&DH subsystem receives incoming commands and data for 

both the spacecraft platform and the payloads. It decodes the commands, and executes 

them if they are for the spacecraft platform. If the commands are for a payload, the 

C&DH subsystem forwards them to the target payload. The associated data is supposed 

to be passed to the payload unaltered and in a timely manner.  On the downlink, the 

C&DH subsystem collects both spacecraft data and payload data, and transmits them to 

the ground segment. 

 

B. MIL-STD-1553B ARCHITECTURE 
The 1553B standard defines the physical and communications protocols of a 

shared, serial asynchronous data bus [11],[12]. The command/response protocols allow 

data exchanges between pairs of equipment connected to the shared bus. Functionally, a 

1553B system is comprised of a data bus and a number of terminals. There are three 

types of terminals: bus controller (BC), remote terminal (RT), and bus monitor (BM). 

There are typically one BC, one or more RTs—up to 31 devices, and, optionally, one or 

more BMs. A 1553B subsystem is a functional unit of a terminal that sends or receives 

data from the data bus [17]. 

Bus management is accomplished via a strict master-slave relationship between 

the BC and RTs. The BC controls all data transfers on the bus. It instructs each RT on 

what bus operation to perform next, responds to service requests from individual RTs, 

and handles errors. A system can have more than one terminal that is capable of 

functioning as a BC, but only one terminal can operate as the BC at any given time. An 

RT performs specific operations in response to the BC’s commands. The BM is a passive 

device that can monitor and record traffic on the bus. 

The time division multiplexing, half-duplex command/response protocol defined 

in MIL-STD-1553B is commonly used in spacecraft for on-board data handling. All bus 

transmissions are accessible to all units connected to the bus, but only one unit can 

“speak” at a time. The BC initiates all bus transfers by sending a command message to a 

specific RT; the receiving RT is required to respond with a message acknowledging 

receipt of the BC’s message. 
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A mission-critical system typically utilizes several 1553B buses to provide 

multiple data paths for redundancy [18],[19]. Figures 2 and 3 show two possible 

redundant bus configurations, the first with a single BC and the second with dual BCs, 

respectively. 

 
Figure 2. Dual redundant bus with single BC (after [11]). 

 

 
Figure 3. Dual redundant bus with dual BCs (after [11]). 
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For dual redundancy, the 1553B standard mandates that a dual standby redundant 

data bus architecture be used. In this configuration, only one data bus can be active at a 

time, except when a valid superseding command is sent on the standby bus [18]. The 

receiving terminal will abort the in-progress command if one exists and respond to the 

new command. 

 
C. SPACEWIRE ARCHITECTURE 

SpaceWire (SpW) is a spacecraft communications network that is based on the 

IEEE-1355-1995 standard for low latency serial interconnect [13]. The nodes in an SpW 

network are connected via bidirectional, full-duplex, point-to-point serial links, either 

directly or through packet switching routers. Figure 4 illustrates an example SpW 

network on a satellite with thirteen SpW nodes, two of which are routers. 

 

 
Figure 4. Example SpaceWire network (after [20]). 
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The SpaceWire standard defines six levels of protocols [13] that are summarized 

in ascending order below. 

1. Physical level: This clause of the standard defines the mechanical and 

electrical interfaces between nodes, i.e., cabling, connectors, use of SpW over 

printed circuit boards and backplanes, and electromagnetic compatibility. 

2. Signal level: This clause covers the signaling characteristics of an SpW link, 

i.e., voltage levels, noise margins, signal encoding, and data signaling rates. 

3. Character level: This clause prescribes the character level protocol used to 

transfer data on an SpW link that includes parity detection, control characters, 

and a time interface to distribute the system time across an SpW network. 

4. Exchange level: This clause describes the protocols used to initialize an SpW 

link, control the flow of data, detect disconnect and parity errors, and recover 

from a link error. 

5. Packet level: This clause specifies the encapsulation scheme used to form data 

packets and the format of an SpW packet. 

6. Network level: This clause defines the functionality of SpW nodes and routing 

switches (routers), the wormhole routing mechanism used by the routers to 

forward packets to the intended destinations, and network level error handling.  

 

A non-routing SpW node is comprised of one or more SpW link interfaces [13]. 

Abstractly, each interface consists of a link receiver (input) and a link transmitter 

(output). Figure 5 shows the components of an SpW link interface and their allocation in 

the SpW protocol stack. A non-routing node does not include the network level protocols 

since they do not implement routing functions. An SpW time-code is a protocol data unit 

used to distribute system time over an SpW network. 

An SpW routing switch (router) is composed of a number of SpaceWire link 

interfaces and a switch matrix [13]. The switch matrix (illustrated in Figure 6) uses the 

destination address of each packet to transfer packets from one link interface’s input port 

to another link interface’s output port.  
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Figure 5. Block diagram of an SpW link interface [20]. 
 
 
 

 
 

Figure 6. Block diagram of an SpW router [20]. 
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D. COMMERCIALLY HOSTED PAYLOAD PROGRAMS 
A hosted payload is traditionally developed together with the host space platform 

whereas a commercially hosted payload is designed and built without detailed knowledge 

of the hosting commercial spacecraft.  

1. Commercially Hosted Infrared Payload Flight Demonstration  

The Commercially Hosted Infrared Payload (CHIRP) Flight Demonstration (FD-

CHIRP) program was started in 2008, launched in 2011, and successfully completed in 

2012. It was the United States Air Force’s first wide field-of-View staring infrared sensor 

flown in geostationary earth orbit (GEO) with a primary mission of missile warning that 

followed the commercially payload approach [21]. 

Except for sharing thermal and power with the space platform, the CHIRP 

payload operates with dedicated on-board processing subsystems payload and is isolated 

from the host platform. It is not connected to the host satellite’s 1553B data bus and does 

not interact with the host satellite’s Command & Data Handling (CD&H) unit or other 

subsystems. The CHIRP payload communicates with the government-owned ground 

system via a dedicated Radio Frequency (RF) link. It utilizes NSA Type 1 encryption for 

confidentiality protection. 

During the launch of a space platform, i.e., between lift-off and when the space 

platform is released into orbit, the space platform communicates with the launch vehicle 

through a hardwired electrical connection to provide its state-of-health (SOH) telemetry 

during launch. Although the SOH telemetry is integrated and downlinked via the launch 

vehicle’s data stream, the space platform remains passive and does not communicate with 

the ground system during launch. Similarly, the CHIRP hosted payload, and hosted 

payloads in general, are completely powered off during launch and ascent.  Hosted 

payloads are not typically powered on until several weeks after launch once orbit-raising 

and initial satellite check-out is complete [22]. 

2. Hosted Payload Solutions  
The HoPS program [6] specifies two reference mission architectures for protected 

hosted payloads: embedded and dedicated-link. For the embedded hosted payload 

architecture, the hosted payload transfers its commanding and telemetry streams via the 

space platform’s commanding and data handling subsystem (right diagram in Figure 7). 
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For the dedicated-link architecture, the hosted payload transfers its commands and data 

through a dedicated transponder channel provided by the space platform  (left diagram in 

Figure 7).  

 
Figure 7. Notional mission architectures for government payloads [23]. 

 

In both cases, a government-supplied Hosted Payload Interface Unit (HPIU) 

provides cryptographically-enforced separation between the protected hosted payload and 

the space platform (Figure 8). The HPIU supports MIL-STD-1553B, SpaceWire, RS-422, 

and Low Voltage Differential Signaling (LVDS) interfaces [23].  

The NSA Type 1 crypto unit provides protection for the hosted payload’s 

commands and mission data. The payload’s analog telemetry data (e.g., power and 

temperature) are digitized and provided to the spacecraft’s C&DH subsystem to transfer 

to the ground system for safety monitoring purposes. Its high data rate allows the LVDS 

to be used to send data between the payload and the HPIU and between the HPIU and the 

crypto unit [23]. 
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Figure 8. Notional Hosted Payload Interface Unit architecture [23]. 
 

 

The HoPS payload is required to undergo a certification and accreditation process 

which is to be identified during the requirement determination phase—either the 

cancelled DOD Information Assurance Certification and Accreditation Process 

(DIACAP) [24] or the recently-issued Risk Management Framework for DoD 

Information Technology [25]. The latter is based on the National Institute of Standards 

and Technology (NIST) Special Publication (SP) 800-37 (Guide for Applying the Risk 

Management Framework to Federal Information Systems: A Security Life Cycle 

Approach) [26] and NIST SP 800-53 (Security and Privacy Controls for Federal 

Information Systems and Organizations) [27]. 

The next chapter discusses the information assurance (IA) security controls 

defined by NIST SP 800-53 that are relevant to covert channel analysis. 
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III. SECURITY CONTROLS 

Annex H of CNSS Instruction No. 1200 (National Information Assurance 

Instruction for Space Systems Used to Support National Security Missions) prescribes 

security requirements for space-based national security systems (NSS), including systems 

that use commercial space platforms to host NSS-payloads [28]. Of note are the 

requirements relating to: assured information flow control across security domains—

cross domain solutions (CDS), separation of payload mission data from the host platform, 

payload command and control data processing, and information flows between host 

platform and payload's space and ground segments.  

 According to DoD Instruction No. 8510.01, a system must meet the IA security 

controls specified in the security overlays that apply to the specific system based on the 

information contained within the system or its operating environment [25]. Therefore, a 

space system with payloads operating at different sensitivity levels must meet the IA 

security controls specified in the Space Platform Overlay [29] and Cross Domain 

Solution Overlay [30].  The overlays are based on the following publications: 

• NIST Special Publication 800-53, Revision 3, Recommended Security Controls 

for Federal Information Systems and Organizations [31];  

• CNSS Instruction No. 1253, Version 2, Security Categorization and Control 

Selection for National Security Systems [32]. 

 
 The Space Platform Overlay specifies a set of security controls required to 

address security risk to “unmanned space platforms in the space segment of national 

security space systems” [29]. The CDS Overlay defines the security controls required to 

protect systems that “provide access to and/or transfer of data between different security 

domains” [30]. 

With respect to covert channels, the CDS Overlay mandates covert channel 

analysis (CCA) to identify potential covert storage and timing channels in cross domain 

solutions. It also requires testing a subset of the identified covert channels to determine 

their exploitability. The Space Platform Overlay does not currently levy these controls on 

unmanned space platforms. Our analysis is intended to inform relevant concerns that 
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have yet to be expressed in this domain, i.e., due to the lack of an overlay for hosted 

payload space applications. 

Revision 4 of NIST SP 800-53 introduced two additional CCA control 

enhancements that require a system to 1) reduce the maximum bandwidth for identified 

covert channels and 2) measure the bandwidth of selected covert channels in the 

operational environment [27]. The Space Platform Overlay and CDS Overlay are being 

revised to conform to SP 800-53 Revision 4. It is anticipated that the updated Space 

Platform Overlay will include all CCA-related controls for space platforms that provide 

multilevel security (MLS) or cross domain capabilities. 

NIST SP 800-53 Revision 4 defines several security controls relevant to covert 

channel analysis that are applicable to space platforms supporting MLS processing or 

hosting multiple payloads owned by different organizations. Table 1 summarizes these 

controls. 
Table 1. Security controls relevant to covert channel analysis. 

 
ID Name 
  
SA-11(6) Developer	
  Security	
  Testing	
  and	
  Evaluation	
  |	
  Attack	
  Surface	
  Reviews	
  

SA-15(5) Development	
  Process,	
  Standards,	
  and	
  Tools	
  |	
  Attack	
  Surface	
  Reduction	
  

SC-6 Resource	
  Availability	
  

SC-7(23) Boundary	
  Protection	
  |	
  Disable	
  Sender	
  Feedback	
  on	
  Protocol	
  
Validation	
  Failure	
  

SC-31 Covert	
  Channel	
  Analysis	
  

SC-31(1) Covert	
  Channel	
  Analysis	
  |	
  Test	
  Covert	
  Channels	
  for	
  Exploitability	
  

SC-31(2) Covert	
  Channel	
  Analysis	
  |	
  Maximum	
  Bandwidth	
  

SC-31(3) Covert	
  Channel	
  Analysis	
  |	
  Measure	
  Bandwidth	
  In	
  Operational	
  
Environments	
  

SI-4(18) Information	
  System	
  Monitoring	
  |	
  Analyze	
  Traffic	
  /	
  Covert	
  Exfiltration	
  

SI-11 Error	
  Handling	
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The SA-11(6) control enhancement requires the developer to perform attack 

surface reviews. Performing a covert channel analysis as part of vulnerability analysis 

and penetration testing is critical to the review process. 

The SA-15(5) control enhancement requires the developer to reduce attack 

surfaces to specific thresholds. This enhancement is closely aligned with SA-11(6). CCA 

is an approach to measuring the attack surface and calculating the appropriate thresholds 

that are commensurate with acceptable risk. 

The SC-6 security control requires the system to allocate critical resources 

according to priority, quota, or organization-defined service allotment to ensure their 

availability. Quota-based mechanisms can help mitigating timing channels (e.g., I/O 

scheduling) and storage channels (e.g., memory exhaustion) that could potentially exist 

when there are multiple payloads sharing a critical resource such as the onboard data bus. 

Priority-based mechanisms can ensure execution of high-priority mission-critical 

functions but they could cause covert channels to occur. 

The SC-7(23) control enhancement requires the system to not provide feedback to 

senders when protocol validation fails. Many network covert channels can be 

implemented by manipulating protocol header fields in such a way to cause error 

messages [33]. 

The SC-31 security control requires a CCA be performed to identify potential 

storage and timing channels and to estimate the maximum bandwidth of those channels. 

This control has three control enhancements. The SC-31(1) enhancement confirms the 

exploitability of a subset of identified channels by testing. The determination of which 

channels to test is typically based on the ease of exploitation and the value of the leaked 

information. The SC-31(2) enhancement requires the developer to reduce the maximum 

bandwidth of selected channels to predefined limits deemed acceptable. The bandwidth 

values are also calculated based on the ease of exploitation and the value of the leaked 

information. The SC-32(3) enhancement requires measuring the bandwidth of a subset of 

identified channels in the environment in which the system operates. The bandwidth of a 

covert channel may vary when measured in different environments with different 

operating settings, e.g., operational versus development testbed. 
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The SI-4(18) control enhancement requires an analysis of covert exfiltration of 

information at the system perimeter and at predefined interior access points within the 

system. Some covert exfiltration techniques are similar to covert channel techniques, e.g., 

manipulation of protocol headers or exploitation of protocol response time, the identified 

covert channels may be useful to the covert exfiltration analysis. 

The SI-11 security control requires the system to exclude information that could 

be exploited by adversaries in error messages. Error messages may be used as a signaling 

mechanism to covertly transfer information, e.g., an error message describing a resource 

exhaustion condition can be manipulated to transmit zeros or ones. 

The selection of these CCA-related security controls and control enhancements 

for a space system with MLS capabilities will be based on the potential adverse impact 

on the particular system and its assets if the system was compromised [27].  

Next, we discuss the threat model we use to identify potential covert channels in 

the 1553B and SpaceWire protocols. 
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IV. THREAT MODEL 

For our work, the threat model is that of two colluding adversarial entities that 

communicate covertly, in violation of the system security policy, to leak information that 

is otherwise not available to unprivileged entities. For our analysis, we apply the 

traditional MLS confidentiality policy as modeled by Bell and LaPadula [34]. This policy 

disallows the flow of information from a unit operating at a high level of confidentiality 

and a unit operating at a low level of confidentiality. 

The 1553B standards specify three types of validation testing that a 1553B unit 

must pass to ensure conformance to the 1553B specification: electrical, protocol, and 

noise reduction [11]. The SpaceWire specification also includes a set of criteria to which 

an SpW implementation can claim to conform if it satisfies the implementation-specific 

criteria [13]. Passing the 1553B validation tests and meeting the SpW conformance 

criteria do not guarantee that the design and implementation of a 1553B or SpW unit is 

trustworthy or free of unintended leakage channels. Furthermore, adversaries can subvert 

software during the development process and supply chain to either create or exploit 

channel vulnerabilities.  

For government hosted payload missions, the critical payload data are encrypted. 

However, protocol metadata, e.g., information in packet headers, are transmitted in the 

clear on the shared communications channels. Our covert channel analysis focuses on 

attacks that utilize this type of data. We began by identifying salient 1553B and 

SpaceWire features that can potentially be exploited through observation of: 1) timing 

behavior, 2) component-specific implementation features, and 3) protocol control 

information using valid protocol operations. 

Channels that require persistent physical access to exploit (e.g., channels 

exploitable via differential power analysis) are out of scope of our analysis. For remote 

space platforms, it may be unrealistic exploit such channels they are generally difficult to 

orchestrate via malicious software or firmware. 
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A. 1553B ATTACK SCENARIOS 
As applied to the 1553B protocol, the applicable security policy is a traditional 

mandatory access control policy in which the active entities with the potential to cause 

information flow, viz. subjects, map to the units connected to the 1553B bus, and 

“information” maps to data words defined in the 1553B protocol.  The data transmitted 

via 1553B data words are specifically distinguishable from other information defined in 

the 1553B protocol in that the contents of data words are not interpreted by the 1553B 

protocol in any way, i.e., have no semantic meaning to the protocol. 

This may be contrasted with other aspects of the 1553B protocol such as 

command words and status words that define the formats and semantically meaningful 

control information that form the basis of the protocol.  In this context, “covert channel” 

refers to the illegal flow of information effected via 1553B protocol constructs. 

In Figure 9, we show a simplified 1553B configuration used to construct the 

hypothesized 1553B attack scenarios. 

 

 
Figure 9. A 1553B configuration with terminals operating at different sensitivity levels. 
 

We formulate the attack scenarios described in Table 2 based on the 1553B 

protocol description and 1553B product manuals. For these attacks, the exploitable 

“protocol control information” refers to any 1553B-defined control and status fields; 
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1553B-defined data payload fields are specifically excluded. Since the BC controls the 

bus, our study does not include attack scenarios in which the BC acts maliciously. 

 
Table 2. 1553B attack scenarios. 

 
Type Attack Scenarios 
  
Timing attack Observation	
  of	
  RT-­‐specific	
  timing	
  behavior	
  

Storage attack (#1) Observation	
  of	
  RT-­‐specific	
  protocol	
  control	
  information	
  
using	
  RT	
  implementation-­‐specific	
  features	
  

Storage attack (#2) Observation	
  of	
  protocol	
  control	
  information	
  using	
  valid	
  
protocol	
  operations	
  	
  

 

Construction of timing channel attacks does not distinguish the use of valid 

protocol operations versus invalid and incorrect protocol operations since it is assumed 

all timing behavior of a specific RT is unique. For the identified timing channel, the two 

cooperating RTs (a Low RT and the High RT) use RT-specific timing behavior to 

transmit and receive High information. This scenario is discussed in Section V.A.1. 

The first storage channel attack involves two cooperating RTs and the High RT 

implements an optional function, which the two RTs agree a priori to use as the signaling 

mechanism. This scenario is discussed in Section V.A.2. 

In the second storage channel attack, the two cooperating RTs only use regular 

protocol operations that are supported by all 1553B terminals. The Low RT can extract 

High information by observing the way the High RT uses a particular operation. This 

scenario is discussed in Section V.A.3. 

 

B. SPACEWIRE ATTACK SCENARIOS 
In contrast to a multidrop shared bus such as 1553B, SpaceWire is a switched 

network with nodes connected via point-to-point links. Each SpW node may have one or 

more SpW interfaces and, in the commercially hosted payload context, the interfaces in a 

multi-interface (MI) node can operate at different sensitivity levels. Figure 10 illustrates 

this configuration. Due to the direct connection between nodes, malicious disclosure 
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between two colluding nodes attached to the same MI node must be accomplished 

through their use of shared resources in the shared node. An MI node can be a routing 

node or a non-routing node, e.g., a mass storage device. 

 

 
Figure 10. A SpaceWire configuration with nodes operating at different sensitivity levels. 

 

A timing covert channel can potentially exist in an MI node if a High node could 

modulate its use of the MI node in a way that a Low node could detect a change in the 

amount of time required for the Low node to access a shared resource on the MI node, 

e.g., memory in a mass memory device. Unless the MI node partitions the shared 

resource and gives its SpW interfaces their own memory chunks, a storage covert channel 

can potentially be constructed if the shared resource manager on the MI node returns an 

error message (e.g., resource exhaustion) that the connected SpW nodes can observe.  

Analyzing covert communications at the three lowest protocol levels of 

SpaceWire (physical, signal and character) is beyond the scope of our analysis. The next 

chapter discusses ways to exploit these timing and storage covert channels. 
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V. PRELIMINARY ANALYSIS 

The first step for managing covert channels in a system is to identify them either 

in an informal way or based on a formal method, e.g., information flow analysis [35], 

Shared Resource Matrix methodology [36] and non-interference analysis [37]. Our 

identification process is ad hoc and loosely based on the flaw hypothesis methodology 

[38],[39],[40], i.e., identifying potential covert channels through analysis of protocol 

specifications and documentation of various products. 

 

A. 1553B COVERT CHANNELS 
Design and implementation choices that could potentially be exploited in a 1553B 

system include: 1) out-of-spec exception handling, such as the incorrect use of the 

subaddress field for data wraparound; 2) undefined behavior, such as how the BC and 

RTs handle undefined error conditions, optional parameters and optional commands; and 

3) bus control and monitoring—for example, considering acyclic data transfer vs. 

scheduled data transfer by RTs, or considering recording-only (passive) bus monitors vs. 

hybrid bus monitors (i.e., able to serve as a back-up bus controller). These conditions 

provide fodder for the construction of the storage and timing covert channels summarized 

in Table 2 and described below. A more complete description of these attacks is provided 

in a separate report [41]. 

 
1. RT response time delay 

This timing covert channel allows two cooperating RTs running at different 

security levels to use the RT response time delay to transmit and observe information. In 

a 1553B system, the BC initiates all commands and each RT must respond to a valid 

command within a time period of 4 to 12 microseconds. Since every connected RT can 

observe all transmissions on the data bus, any RT can identify all commands sent by the 

BC to another RT and all responses returned by the target RT. Hence, a Low RT 

(receiver) could detect the covertly transmitted information by monitoring the response 

time delay introduced by a malicious High RT (sender). The signaling mechanism would 

be the amount of time delayed by the High RT before responding to a command. Figure 
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11 illustrates an example 1-bit timing channel in which the High RT varies the response 

time to send different bit values. 

 
Figure 11. RT response time delay timing channel. 

 

A Low RT can receive up to three bits of information per message if the High RT 

could control the response time delay to a granularity of one microsecond. Several 1553B 

products provide board-level programming interfaces that allow applications to set the 

granularity of the RT response time down to nanoseconds. For example, the AIM PCI 

1553 bus interface module allows the RT response time to be programmed in 250 

nanosecond increments [42]; the AltaCore-1553 protocol engine supports a 12-bit RT 

response time with a resolution of 100 nanoseconds [43]; and the Excalibur multifunction 

interface module allows the RT response time to be set within the range of 4000 – 42000 

nanoseconds [44]. 

A typical timing channel requires the sender and receiver to have either a 

common clock or the ability to create a time reference [14]. For this timing channel, the 

colluding RTs can use the end of a BC command as the common time reference. 

Synchronization between the two RTs can start after a command word is detected; a 

command word is always preceded by an inter-message gap of at least 4 microseconds 
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(introduced by the BC), and consists of: a 3-bit sync pattern, sixteen bits of information, 

and one parity bit. 

2. Command illegalization 

This storage channel allows two cooperating RTs to use RT-specific 

implementation of the “command illegalization” function to leak information. An illegal 

command is a valid command that is not in the set of commands specified for use with 

the target RT. Depending on its design, an RT may treat certain commands as illegal and 

will return a status word with the message error (ME) bit set when such commands are 

detected. A BC can automatically retry the issued command when it receives a status 

word response for that command with the ME bit set.  

Our analysis assumes that the BC implements automatic retrying and the High RT 

supports command illegalization. The BC must retry at least once on the same bus and 

the High RT must be able to dynamically reject an arbitrary command as illegal. 

Furthermore, the High RT and Low RT must previously agree on when the signaling 

method will be utilized. For example, the agreement can be based on a specific command 

or commands sent from the BC. Whenever the BC sends a specific command to the High 

RT, the High RT will signal a bit by selectively rejecting the command or accepting the 

command. The Low RT observes the High RT’s action to receive the transmitted bit. The 

sequence chart in Figure 12 shows this signaling mechanism. 

An RT that supports command illegalization typically provides a programming 

interface for the RT’s subsystem to configure the accepted illegal commands which are 

kept in an illegalization database in either register or memory. When used as an RT, both 

the Microsemi Core1553BRM [45] and Aeroflex SµMMIT [46] protocol engines support 

RT command illegalization.  
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Figure 12. RT command illegalization storage channel. 

 

3. Acyclic transfer 

This storage channel enables two cooperating RTs to leak information using the 

Service Request (SR) bit in the status word. In a 1553B system, the BC issues commands 

to the RTs in a cyclic sequence. When an RT wants to request an acyclic (asynchronous) 

data transfer, it returns a status word with the Service Request (SR) bit set. When the BC 

detects the Service Requested condition, the BC either executes a predefined function or 

sends a Transmit Vector Word command to obtain additional information from the RT 

about the requested service. 

In our analysis, we hypothesize that the BC responds to an asynchronous service 

request by issuing the Transmit Vector Word mode command, after which the RT 

responds by transmitting a vector word. The Low RT receives bits from the High RT by 

observing the way the High RT issues an asynchronous request. Figure 13 illustrates a 

potential channel. 
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Figure 13. Acyclic transfer storage channel. 

 

If the High RT follows up the request with transmission of a non-zero vector 

word, the Low RT knows the High RT is merely performing a legitimate asynchronous 

request action. If the High RT transmits a single empty vector word, the Low RT 

interprets the High RT’s action as transmission of a bit value of 0. If the High RT 

transmits two consecutive empty vector words, the Low RT interprets the High RT’s 

action as transmission of a bit value of 1. 

All 1553B products that we survey support the use of the SR bit to request 

asynchronous service. 

 

B. SPACEWIRE COVERT CHANNELS 
This section describes several covert channels that may potentially exist in an 

SpW mass memory device and an SpW router.  

1. Mass memory device scenarios 
 A mass memory device (MMD) on a spacecraft (shown in Figure 4) is shared by 

multiple components, either directly or indirectly via a router. Its primary function is to 
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provide memory-based storage that other equipment on the spacecraft (e.g. sensors, 

scientific instruments, etc.) to save their data until the data can be transmitted to the 

ground system. 

A representative design of the MMD used in our study is modeled after the 

INTAµSAT’s mass memory unit reported by Garcia, et al. [47] (see Figure 14). The 

MMD has multiple SpW link interfaces, each is connected to an external SpW node. The 

MMD is itself an SpW node in the SpW network. Internally, the memory device in each 

SpW link interface (not shown in Figure 4) communicates with the SDRAM controller 

via an Advanced Microcontroller Bus Architecture (AMBA) Advanced High-

Performance Bus (AHB) bus. The SDRAM controller manages the external SDRAM 

chips and the on-chip processor interacts with the spacecraft’s Telemetry (TM) and 

Telecommand (TC) system. The processor also manages the SpW link interfaces via the 

AMBA AHB bus. 

AMBA AHB is a high-performance master-slave system bus. An AMBA AHB 

system typically includes one or more bus masters, one or more bus slaves, a bus arbiter, 

and a bus decoder [48].  

 
Figure 14. Mass memory device block diagram (after [44]). 
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A bus master can initiate read and write operations; a bus slave performs the read 

and write operations initiated by a bus master; the bus arbiter decides which bus master is 

allowed to initiate data transfer on the bus; and the bus decoder performs address 

decoding of each transfer and selects the slave involved in the data transfer. The bus 

arbiter ensures that only one bus master is active on the bus at a given time. 

Once a data transfer is started, the initiating bus master cannot cancel that 

transfer. During a transfer, a slave can return one of the following responses: OKAY, 

ERROR, RETRY and SPLIT. The OKAY response indicates that transfer is either 

progressing normally or has completed successfully. The ERROR response tells the 

master that transfer has terminated unsuccessfully due to an error. Both the RETRY and 

SPLIT responses indicate that the slave cannot complete the transfer immediately and has 

released the bus so that another bus master can gain access to the bus. With RETRY, only 

a master with higher priority can use the bus whereas with SPLIT, any bus master 

requesting the bus can get access regardless of its priority. The original bus master is 

expected to retry the transfer until it either completes successfully or terminates with an 

ERROR response. 

Several properties of the MMD can be exploited to create a covert channel: 

1. The MMD does not fully buffer or otherwise virtualize data transfer requests, 

e.g., it does not present a non-blocking data transfer interface to all attached 

nodes. 

2. The MMD implements bidirectional flow of control information between the 

MMU and all connected nodes.  Control information can include commands, 

error and status information. 

As a shared resource that presents a non-virtualized interface, the MMD is 

definitely the source of a covert timing channel.  A storage channel may also exist, 

depending on the control information made available by the MMD.   

Abstractly, a timing covert channel is created by a malicious High node 

cooperating with a malicious Low node to time their requests to the MDD node in a 

manner such that contention to the shared MMD node can be detected. 

The MMD design utilizes the AMBA bus to connect multiple SpW links, which 

in turn connect to multiple devices that read and write data to the MMD.  Within this 
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MMD design, the AMBA bus is the shared resource whose use is modulated to create the 

covert channel. 

Only one AMBA bus master at a time may perform a transfer.  If a second bus 

master requests a transfer while the bus is in use by the first bus master, the second bus 

master must wait until the current transfer is complete before the second bus master may 

access the bus.  Malicious nodes exploit this behavior to transmit information by timing 

MMD data transfer requests to either create contention for the AMBA bus (a 1 value) on 

not create contention for the AMBA bus (a 0 value).  

First the Low node establishes a baseline for how long an MMD data transfer 

should take when there is no contention on the AMBA bus, i.e., there is no other active 

MMD data transfer. 

To transmit a 1 value, the High node requests an MMD data transfer at Time 0.  

The Low node will request an MMD data transfer at Time 1 and measure the time it takes 

to complete the MMD data transfer.  If the data transfer takes longer than the baseline 

value, the Low node will know that the High node has transmitted a 1 value by initiating 

an MMD data transfer prior to the Low node data transfer request. 

To transmit a 0 value, the High node will take no action at Time 0.  The Low node 

will request an MMD data transfer that will complete within the baseline time because 

there was no contention for the AMBA bus, thus a 0 value is signaled from the High 

node. 

2. Router scenarios 
Instead of store-and-forward routing (commonly employed in TCP/IP networks), 

an SpW router uses wormhole routing—a form of cut-through routing [49]—to transfer 

packets [13]. While a store-and-forward router buffers a packet in its entirety before 

forwarding it to the next node, a wormhole router forwards a packet as soon as the router 

finishes examining the packet’s header to determine the output port to which the packet is 

forwarded.  For SpaceWire, if the output port (link interface) is busy, the router stops 

receiving incoming packets until the output port becomes ready for transmission again. 

To inform the sending node of the “port not ready” condition, the router ceases sending 
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flow control tokens (FCT) to the transmitting node. An FCT is a control character that an 

SpW link interface uses to tell its peer that it can accept eight more data characters1.  

While the output port is in the busy state, other packets that arrive on other SpW 

ports (on the same node) and are to be routed to the same output port will also be blocked 

until the output port is freed up. This could increase the transfer latency of the blocked 

packets since the SpW standard does not impose any limit on the maximum packet size. 

Employing virtual channels [50] over a single link to allow incoming packets to bypass 

blocked packets can ameliorate this problem. Nevertheless, without some form of 

temporal partitioning, the use of virtual channels alone may not be sufficient to avoid 

congestion. The SpW standard permits but does not mandate the use of virtual channels. 

Hence, we hypothesize that a timing channel could potentially exist in an SpW network 

that does not implement virtual channel flow control. A High node could leak 

information by varying the time it causes congestion at a particular port to signal to a 

Low node a value of 0 or 1. The Low node would receive the transmitted value by 

detecting a change in the transfer latency of its packets.  

A wormhole router does not maintain I/O buffers because it is not required to 

buffer the entire packet before accepting the packet. Consequently, there is no shared 

buffer resource that could be exploited. However, the output ports are contentious shared 

resources. We speculate that a storage channel could be constructed using the FCT as a 

signaling mechanism. A High node could selectively create contention for a specific 

output port to send a 1 or 0 to a Low node. The Low node would try to send packets to 

the same port and could determine the value sent by the High node by observing whether 

the link interface connected to the Low node sends FCT(s) to the Low node or not. 

  

                                                
1	
  Multiple	
  FCTs	
  can	
  be	
  sent	
  if	
  there	
  is	
  space	
  in	
  the	
  receiving	
  link	
  interface’s	
  receiver	
  buffer	
  for	
  the	
  
additional	
  data	
  characters—one	
  FCT	
  for	
  every	
  eight	
  spaces.	
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VI. CONCLUSION AND FUTURE WORK 

This report describes the results of our study on covert channels that can 

potentially exist in 1553B and SpaceWire protocols. We have shown that it is possible to 

construct timing and storage channels by observing timing behavior, protocol control 

information, and implementation-specific features. Our approach is to find potential 

attack scenarios through analysis of protocol specifications and documentation of various 

products. 

 

A. SUMMARY OF RESULTS 
In our analysis of the 1553B bus protocol, we have identified three potential 

covert channels. A timing channel between a malicious High RT and a colluding Low RT 

could be constructed using the RT response time delay. Two storage channels could exist 

if the two cooperating RTs exploited the optional command illegalization functionality 

and the asynchronous data transfer mechanism. 

For the SpaceWire analysis, we have surmised a potential timing channel in a 

mass memory device, and two channels (timing and storage) in a router. These channels 

arise from the use of shared resources in a multi-interface node by two conspiring 

external nodes. 

 

B. FUTURE WORK 
Two major tasks in the covert channel analysis process not addressed in this 

report are bandwidth estimation and mitigation of identified channels. For the identified 

1335B channels, the next step would be an empirical study to estimate the rate at which 

information can be sent over each channel, and the feasibility and degree to which each 

channel can be exploited. Regarding mitigation, a brute force approach to handle the two 

storage channels is to disallow the use of command illegalization and asynchronous 

service request. However, doing so may not meet specific functional properties or 

absolute timing constraints of a particular mission.  Alternatively, implementing an audit 

mechanism using a bus monitor may help detect and report suspicious behavior and 

potential exploits. The audit trail can be used to formulate a mitigating plan. A useful 
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follow-up work is to confirm through testing that the identified channels are real channels 

and that the chosen the methods for handling the channels work as intended. 

For SpaceWire, there are several directions for further research. One topic is to 

identify for potential storage channels that could be exploited via the SpW remote 

memory access protocol (RMAP) [51]. The SpW standard requires all routers to support 

an internal configuration port that can be used by applications to configure the routing 

logic. The SpW standard does not define a specific configuration mechanism but the 

RMAP is commonly used to read from and write to a router's configuration registers. The 

functionality and semantics of these registers are product-specific. Searching for these 

channels would require studying the configuration logic provided by different SpW 

products. 

Another topic would be to determine if the Error End of Packet (EEP) condition 

could be used as a signaling mechanism. When a transmission error condition occurs, the 

SpW link will be disconnected and any packet that was being transferred will be 

terminated with a special EEP character. The data in an EEP-terminated packet can be 

valid and the EEP handling action depends on the type of the SpW component that 

receives the packet. An SpW router will transfer an EEP-terminated packet as a normal 

packet, i.e., a packet that ends with an End of Packet (EOP) marker. For a non-routing 

node, the EEP-terminated packet will be passed to the application level. This task 

requires studying vendor documentation to confirm the envisioned attack scenario(s).  

Other error conditions that are reported to the network level (by the exchange 

level or packet level) are link error and invalid destination address. A link error will 

cause the link interface to be reset and, for a non-routing node, the error condition is 

reported to the application level. A link error may be flagged on a router for debugging 

and monitoring purposes. Further investigation is needed to determine if the link error 

condition could be exploited to leak information by measuring the time it takes to reset 

the link. 
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